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In this Supplemental Document, we present additional results and details on the proposed method in the main
manuscript. Specifically, we describe the

• fabrication of diffractive optical element,
• PSF calibration,
• model finetuning,
• reconstruction network architecture,
• additional simulations, and
• additional experimental validation.

1 FABRICATION OF DIFFRACTIVE OPTICAL ELEMENT
The DOE is fabricated on a 4 inch 0.5-mm-thick fused silica wafer. First, four master masks are fabricated on soda
lime plates by laser direct writing on amaskmaker (Heidelberg 𝜇PG 501). Second, in the photolithography step, the
wafer is cleaned in Piranha solution at 115◦C for 10 min to remove contaminants, and then dried with N2 for 7 min.
An auxiliary 200-nm-thick Chromium (Cr) layer is deposited by sputtering on thewafer. A 0.6-𝜇𝑚-thick photoresist
(AZ1505) is then spin-coated on the Cr film, after HMDS (Hexamethyldisilazane) vapor priming for 20 min. We
align the wafer with the master mask on a contact aligner (EVG6200∞) in the hard+vacuummode, and then apply
UV exposurewith a dose of 9mJ/cm2. The patterns are then transferred from themastermask to the photoresist.We
develop the photoresist in AZ726MIF for 17 sec, and clean it with De-Ionized water, and remove residual water with
N2 drying. We etch the Cr film under the photoresist with Cr etchant (mixtures of HClO4 and (NH4)2[Ce(NO3)6])
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Fig. 1. Zygo interfemometer
height measurement of a por-
tion of the fabricated DOE.

for 1 min, and remove the remaining photoresist with Acetone. The patterns are
then transferred from the photoresist to the Cr layer. Later, in the reactive-ion
etching step, we dry etch the materials in the wafer with plasma of 15 sccm CHF3
and 5 sccm O2 at 10 ◦C. Only the open areas in the wafer without Cr covering are
selectively etched. Once the etching is finished, we remove all the auxiliary layers.
The above steps are repeated for 4 iterations to form the 16-level structures. For
the design wavelength of 550 nm, the etching depths are 75 nm, 150 nm, 300 nm,
and 600 nm, respectively. Finally, an additional Cr layer is deposited and etched
with the aperture size to match the lens pupil. See Figs. 1 for a 3D visualization of
the measured height of a section of the fabricated DOE from Zygo interfemometer.

2 PSF CALIBRATION
After building the experimental prototype with the fabricated DOE, we calibrated the depth-varying PSFs of our
camera. To this end, we place a point light at a known distance from the camera and acquire a raw HDR image.
For the point light source, we use a LED light source (Thorlabs QTH10) equipped with a diffuser and a precision
pinhole (Thorlabs P500K). Cropping the high-intensity region results in a PSF at that distance and we repeat this
procedure for both the background depth (5 m) and the foreground depth (15 cm).

3 MODEL FINETUNING
To improve the network performance on real captures, aside from feeding the network the PSF measurements,
we also capture a real-world occlusion-free dataset to finetune our network. Specifically, we use a monitor to
display different high-resolution images from DIV2K dataset [Agustsson and Timofte 2017] as the target scene,
and capture 500 pairs of captures with and without using the proposed DOE. See Fig. 2 for the scene setup as well
as an example image pair. During finetuning, we omit the obstruction loss, since both images are occlusion-free.
Additionally, we downsample the image by 4 times before computing the per pixel ℓ1 loss, to account for alignment
inaccuracies.

Background Image Displayed on an LCD Monitor DOE Sensor CaptureReference Capture

LCD Monitor

Fig. 2. Left: Scene setup for the finetune data capture, Middle and Right: images captured with and without using the
proposed DOE.

4 RECONSTRUCTION NETWORK ARCHITECTURE
Our reconstruction network follows a hierarchical structure. We start by performing Wiener deconvolution of
the captured image with the PSFs corresponding to near (occluder) depths, which is concatenated to the captured
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Table 1. Network architecture description. Rows enclosed between dashed lines signify non-learned operations performed
on the output of preceding layers. In the table, “conv-k(𝑎)-s(𝑏)-IN-LRelu” represents a convolution layer with an 𝑎 × 𝑎 kernel
window, using stride 𝑏, followed by instance normalization and a Leaky Relu (𝛼 = 0.02) activation function. We use convT to
denote transposed convolution, and Wdeconv to denote Wiener-deconvolution using the given far PSF, performed in the
frequency domain.

Name Layer Type Output Channels
Inputs: concatenated captured image, deconvolved image 3 × 2 = 6
down0_0 conv-k7-s1-IN-LRelu 12
down0_1 conv-k3-s1-IN-LRelu 12
deconv0 Wdeconv 12
down1_0 conv-k3-s2-IN-LRelu 24
down1_1 conv-k3-s1-IN-LRelu 24
down1_2 conv-k3-s1-IN-LRelu 24
deconv1 Wdeconv 24
down2_0 conv-k3-s2-IN-LRelu 48
down2_1 conv-k3-s1-IN-LRelu 48
down2_2 conv-k3-s1-IN-LRelu 48
deconv2 Wdeconv 48
down3_0 conv-k3-s2-IN-LRelu 96
down3_1 conv-k3-s1-IN-LRelu 96
down3_2 conv-k3-s1-IN-LRelu 96
deconv3 Wdeconv 96
down4_0 conv-k3-s2-IN-LRelu 144
down4_1 conv-k3-s1-IN-LRelu 144
down4_2 conv-k3-s1-IN-LRelu 144
deconv4 Wdeconv 144

Concatenating down4_2, deconv4 288
bottleneck_0 conv-k3-s1-IN-LRelu 288
bottleneck_1 conv-k3-s1-IN-LRelu 144
up4_0 convT-k2-s2-IN-LRelu 96

Concatenating up4_0, down3_2, deconv3 288
up4_1 conv-k3-s1-IN-LRelu 96
up3_0 convT-k2-s2-IN-LRelu 48

Concatenating up3_0, down2_2, deconv2 144
up3_1 conv-k3-s1-IN-LRelu 48
up2_0 convT-k2-s2-IN-LRelu 24

Concatenating up2_0, down1_2, deconv1 72
up2_1 conv-k3-s1-IN-LRelu 24
up1_0 convT-k2-s2-IN-LRelu 12

Concatenating up1_0, down0_2, deconv0 36
up1_1 conv-k3-s1-IN-LRelu 12
up0_0 conv-k3-s1-IN-LRelu 3

Concatenating up0_0, captured image 6
up0_1 conv-k5-s1-IN-LRelu 3

Summing up0_1 and captured image 3
Concatenating previous output and the captured image 6

res0 ResNet-k3-s1-d1-LRelu 6
res1 ResNet-k3-s1-d1-LRelu 6
res2 ResNet-k3-s1-d1-LRelu 6
out conv-k7-s1-d1-Relu 3

image itself, amounting to two concatenated versions of the captured image. The spatial dimension of the network
layers is gradually reduced, while additionally applying Wiener deconvolution in feature space before each
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downscaling, using the far (background) PSF. The number of channels increases with each spatial dimension
decrease, until reaching a bottleneck block. Subsequent layers then gradually grow in spatial dimensions, while
using skip connections to exploit information from corresponding-dimension layers in the downscaling stream.
We further refine the output using 3 residual blocks. See Tab. 1 for a full network specification.

5 ADDITIONAL SIMULATION
In addition to the results presented in the main manuscript, we present additional qualitative simulation results,
demonstrating the capability of the proposed method to handle different types of obstructions. Figs. 3 & 4 present
additional results on handling dirt splash obstructions, demonstrating how merely using our DOE (optimized to
operate w/o or w/ a subsequent neural network, top rows, columns 2 & 3, respectively) already reveals some of
the occluded background, while using the complete approach (including the complementary neural network,
bottom rows, middle) then greatly improves reconstruction performance, bringing the background image quality
close to that of the obstruction-free version (bottom right). In contrast, existing inpainting methods either result
in non-plausible artifacts (CTSDG [Guo et al. 2021]) or at best hallucinate wrong details and fail to reconstruct
significant content like pedestrians, cars and trees (LaMa [Suvorov et al. 2021]).
Similarly for mitigating raindrop obstructions, we show in Figs. 5 & 6 how our method can reconstruct the

degraded background content (e.g. people, license plate), significantly outperforming existing inpainting methods
[Guo et al. 2021; Suvorov et al. 2021] or even the AttentiveGAN method [Qian et al. 2018], designated for
raindrop removal. Finally, Figs. 7 & 8 show more examples of coping with fence obstructions in a point-and-shoot
photography scenario, demonstrating the advantage of our method in reconstructing occluded background
content (e.g. porch roof, soccer player’s body, facial details) over existing inpainting methods [Guo et al. 2021;
Suvorov et al. 2021], as well as over the designated visual fence removal DefenceNet method [Matsui and Ikehara
2020].

We further present ablation results in Fig. 9 & 10 to clarifying the role of different components in the proposed
framework. In particular, we show the role of the complementary neural network by comparing to results obtained
by applying classic Wiener filtering or Richardson Lucy deconvolution on our DOE captures. We also compare
our results with those of an image-to-image translation [Ronneberger et al. 2015] and image deblurring [Kupyn
et al. 2019] methods applied on top of our DOE captures, which seem to struggle to remove the color aberrations
induced by the foreground obstructions. We additionally qualitatively demonstrate the benefit of jointly, rather
than sequentially, optimizing the DOE and subsequent reconstruction network.

6 ADDITIONAL EXPERIMENTAL VALIDATION
We present additional experimental results obtained using our prototype in Fig. 11. The results on six captured
scenes correspond to the dirt splash, raindrop and fence obstruction scenarios, demonstrating our method’s
capability to produce high quality reconstructions of the occluded background scenes. This is in contrast to
capturing with a conventional camera (4th column), even when post processing using the LaMa method [Suvorov
et al. 2021] (middle column). Since Lama is an image inpainting method, its performance depends on the additional
inpainting mask input we provide. As we show in Fig 12, using a conservative (thinner) mask may allow it to
exploit information from partially occluded regions, but typically does not yield much improvement compared to
the degraded input, while using a more aggressive (thicker) mask may exhibit a more significant change, at the
cost of being unfaithful to the existing latent scene. Therefore, for the comparison in Fig. 11 we experimented
with various mask thicknesses, and hand-picked the one yielding the most appealing result for each scene.
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Conventional
Camera Capture

Optics-only DOE
Camera Capture

Proposed DOE
Camera Capture CTSDG

Proposed Ground TruthLaMa

Conventional
Camera Capture

Optics-only DOE
Camera Capture

Proposed DOE
Camera Capture CTSDG

Proposed Ground TruthLaMa

Fig. 3. Additional dirt-splash obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Existing inpainting methods instead hallucinate or deblur the occluded background regions. Results
of existing methods (CTSDG & LaMa) that try to hallucinate the occluded regions often lack some significant content (e.g.
missing trees in the top example, and pedestrians in the bottom example) or even exhibit significant artifacts.
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Fig. 4. Additional dirt-splash obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Results of existing methods (CTSDG & LaMa) that try to hallucinate the occluded regions often
lack some significant content (e.g. missing cars in the top example, and pedestrians in the bottom example) or even exhibit
significant artifacts.
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AttentiveGAN

AttentiveGAN

Fig. 5. Additional rain-drop obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Existing inpainting methods (CTSDG and LaMa), as well as a designated raindrop removal Attentive-
GAN method [Qian et al. 2018], often fail to reconstruct important visual details, e.g. license plates in the top example and
people in the bottom example.
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Fig. 6. Additional rain-drop obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Existing inpainting methods (CTSDG and LaMa), as well as a designated raindrop removal Attentive-
GAN method [Qian et al. 2018], often fail to reconstruct important visual details, e.g. license plates in both examples.
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Fig. 7. Additional fence obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Existing inpainting methods (CTSDG and LaMa), as well as a designated visual fence removal
DefenceNet method [Matsui and Ikehara 2020], merely attempt to hallucinate the occluded regions, which leads to loss of
significant content, e.g. the soccer-player’s body in the top example and the porch’s roof in the bottom example.
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Fig. 8. Additional fence obstructions results. Our DOE (optimized to operate with or without a subsequent neural
network) allows us to see through occlusions. Feeding the captured image into our neural network results in an almost
obstruction-free image. Existing inpainting methods (CTSDG and LaMa), as well as a designated visual fence removal
DefenceNet method [Matsui and Ikehara 2020], merely attempt to hallucinate the occluded regions, which leads to loss
of significant content, e.g. the right-side gravestone’s top in the top example, and the person’s facial details in the bottom
example.
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Fig. 9. Additional ablation examples. Applying Wiener filtering or Richardson-Lucy deconvolution by itself using the
DOE PSF corresponding to far distances fails to remove the chromatic aberrations from the near scene obstructions. Using
the near-scene PSF results in uninformative reconstructions to human observers. Conventional image-to-image mapping
(UNet [Ronneberger et al. 2015]) and SOTA image deblurring (DeblurGAN-v2 [Kupyn et al. 2019]) struggle to recover the true
color of the background due to the aberrated foreground obstructions. Sequentially optimizing the DOE and reconstruction
network produces inferior results compared to the proposed end-to-end approach. We attribute this to the difficulty of
designing optimal intermediate losses (on the PSFs) for this multi-objective problem.
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Fig. 10. Additional ablation examples. Applying Wiener filtering or Richardson-Lucy deconvolution by itself using the
DOE PSF corresponding to far distances fails to remove the chromatic aberrations from the near scene obstructions. Using
the near-scene PSF results in uninformative reconstructions to human observers. Conventional image-to-image mapping
(UNet [Ronneberger et al. 2015]) and SOTA image deblurring (DeblurGAN-v2 [Kupyn et al. 2019]) struggle to recover the true
color of the background due to the aberrated foreground obstructions. Sequentially optimizing the DOE and reconstruction
network produces inferior results compared to the proposed end-to-end approach. We attribute this to the difficulty of
designing optimal intermediate losses (on the PSFs) for this multi-objective problem.
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Fig. 11. Additional experimental assessment results.Our method (left column) is able to restore image regions that would
otherwise be occluded by the obstruction, see the conventional camera column. Merely using the DOE without subsequent
processing (second column) already provides more visual information compared to using a conventional camera. With help of
the reconstruction network, the proposed computational camera significantly outperforms recent image inpainting methods
LaMa [2021]. Post-capture inpainting fails to recover scene details (e.g., text) and sometime the entire regions due to lack of
information.
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Conventional Capture Reference

LaMa output using small mask LaMa output using median mask LaMa output using large mask

Fig. 12. Mask-dependent results using the LaMa [2021] inpainting method. To compare our method to the Lama
image inpainting method, we manually marked masks indicating the occluded regions. However, the performance of Lama
depends heavily on the input mask. Here we show that a very conservative mask (bottom left) can result in an output visually
no different to the occuded input, while an aggressive mask (bottom right) can trade potentially useful information for a
visually smoother output. For a fair comparison, we created several masks for each scene and picked the one that results in
the best visual quality.
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